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1
ENHANCED CODE CALLBACK

RELATED APPLICATIONS

This application claims the benefit of and priority to U.S.
Patent Application No. 62/082,262, filed on Nov. 20, 2014,
and entitled “Enhanced Swizzling,” and which is hereby
incorporated by reference in its entirety.

TECHNICAL FIELD

Aspects of the disclosure are related to computing hard-
ware and software technology, and in particular, to enhanced
code callback technology.

TECHNICAL BACKGROUND

In the fields of computer hardware and software technol-
ogy, it is possible in various runtime environments to modify
how a method, function, class, or other such software
component maps to the actual code implementation of the
component. Sometimes referred to as swizzling, such re-
mapping technology allows code associated with one func-
tion to be replaced by code associated with another function.
This may be useful in the context of making modifications
to a user interface, for example.

Some implementations of re-mapping technology involve
modifying the value of a pointer that points to a location in
memory where a method is implemented in code. By chang-
ing the value of the pointer, the method can be made to point
to other code such that, when the method is called, a
different method is employed in its place. The target method
that is called in place of the original method is sometimes
referred to as a callback function.

In order to swizzle multiple functions, multiple callback
functions are typically created that each correspond to one of
the multiple functions, which allows the callback functions
to call back into the original functions with little difficulty.
For instance, one original function may be remapped to
jump to one callback function, while another original func-
tion may be remapped to jump to another, different call back
function, and so on for the remainder of the original and
callback functions as they correspond to each other.

Code optimization technology employed in some runtime
environments can make code re-mapping difficult, if not
impossible. For example, one runtime environment reduces
the prominence of the v-table, or dispatch table, which
reduces the effectiveness of remapping via pointer modifi-
cations. Pointers are still used to a certain extent, but
de-virtualization and other optimization techniques that
speed-up the execution of code make finding and remapping
them more difficult.

OVERVIEW

Provided herein are systems, methods, and software that
enhance code hooking and callbacks by way of a central, or
single callback function to which any of multiple original
functions may jump. In at least one implementation,
machine code that is representative of the multiple original
functions is modified to jump into a single callback function
when any of the multiple original functions are invoked.

In addition, the single callback function identifies which
target function of various target functions to call into in
response to the original function jumping to the callback
function and calling the target function. When the target
function returns to the callback function, the callback func-
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tion employs technology to identify which original function
of the multiple original functions jumped to the callback
function to begin with, so that the callback function can
return to the original function.

In another implementation, the machine code implemen-
tation of an original function is modified to jump into an
intermediate function. The intermediate function calls a
dispatcher function that calls into a central callback function.
The central callback function is able to return to the original
function.

This Overview is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Technical Disclosure. It may be understood that
this Overview is not intended to identify key features or
essential features of the claimed subject matter, nor is it
intended to be used to limit the scope of the claimed subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood
with reference to the following drawings. While several
implementations are described in connection with these
drawings, the disclosure is not limited to the implementa-
tions disclosed herein. On the contrary, the intent is to cover
all alternatives, modifications, and equivalents.

FIGS. 1A-C illustrate various operational architectures
and associated scenarios in several implementation of
enhanced swizzling.

FIG. 2 illustrates a callback process in an implementation.

FIG. 3 illustrates an operational architecture and an asso-
ciated scenario in an implementation.

FIG. 4 illustrates an operational architecture in an imple-
mentation.

FIG. 5 illustrates a computing system suitable for imple-
menting any of the architectures, components, applications,
services, processes, and operational scenarios disclosed
herein with respect to FIGS. 1-4 and discussed below in the
Technical Disclosure.

TECHNICAL DISCLOSURE

Implementations are disclosed herein for enhancing swiz-
zling technology. In at least one implementation, functions
are hooked by modifying their machine code implementa-
tions to jump to a central callback function. The central
callback function may then route to other target functions
that serve to replace the hooked functions. In another
implementation, the machine code implementations are
modified to jump to intermediate functions. The intermedi-
ate functions invoke dispatch functions that can call into a
central callback function. The central callback function may
return to the hooked functions.

In both implementations, arguments associated with the
hooked functions are identified and retained in memory,
allowing the central callback function to return to the
original, hooked functions with ease, if so desired.

FIG. 1A illustrates a callback architecture 100A for imple-
menting enhanced code callbacks. FIG. 1A also illustrates a
representative operational scenario to demonstrate various
aspects of enhanced code callbacks.

Callback architecture 100A includes function 101, func-
tion 103, function 105, and function 107. Functions 101,
103, 105 and 107 are representative of any methods, func-
tions, classes, or other such software components that may
be subject to modification at runtime. Callback architecture
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100A also includes callback function 109, which is repre-
sentative of any other function to which a modified (or
swizzled) function can jump.

In operation, a software routine (not pictured) modifies
machine code associated with a designated component so
that the component, rather than executing its own code,
jumps to the code for another function. In this manner, the
other function can be executed in place of the original
function. In this scenario, it is function 101 and function 105
that are modified. After being modified, function 101
includes hook 102, which represents that function 101 is
hooked into callback function 109. Function 105 also
includes a hook 106 to represent that function 105 is hooked
into callback function 109.

Hooks 102 and 106 are implemented by modifying the
machine code implementation of functions 101 and 102.
Machine code 111 is representative of a machine code
implementation of function 101. Machine code 111 includes
a first portion 113 and a second portion 115. A limited
amount of machine code is illustrated merely for exemplary
purposes and more code would normally be present. It may
also be appreciated that the format and content of machine
code 111 is provided merely for illustrative purposes and
could also vary. It may also be appreciated that the terms
“first” and “second” with respect to the portions of machine
code 111 are used merely to distinguish the portions from
each other, not to denote order. For example, other code may
precede the first portion 113 of machine code 113; other code
may exist in-between first portion 113 and second portion
115; and other code may follow second portion 115.

The first portion 113 of machine code 111 initially reads
EAO0500C, whereas the second portion 115 of machine code
111 initially reads 1FE2FFE. The aforementioned software
routine searches for machine code 111 in memory and, upon
locating it, overwrites the first portion 113 with new code.
The new code in the first portion 113 of machine code 111
reads O0OCD13E, merely to represent that the content of the
first portion 113 was overwritten with new information. It
may be appreciated that the same or a similar modification
may be made to the machine code associated with function
105. Many techniques for hooking code are possible and
may be considered within the scope of the present disclo-
sure.

When function 101 is called in operation and machine
code 111 is encountered, the new value in the first portion
113 of machine code 111 causes a programmatic jump to
callback function 109 (via its own machine code implemen-
tation). When callback function 109 is called, it runs call-
back process 200, which is illustrated in more detail in FIG.
2. Referring parenthetically to the steps illustrated in FIG. 2,
when code jumps into callback function 109, callback func-
tion 109 identifies the source of the call or jump (step 201).
An identity of the source of the call may be stored in
memory for later reference. The source of the call may be
identified by name, by associated variable, arguments, or
parameters, or in a variety of other ways. Many techniques
for identifying the source of a call are possible and may be
considered within the scope of the present disclosure.

For example, each function that is hooked will have
different numbers of and types of arguments that are stored
in different locations in memory. When callback function
109 is invoked via a hooked function, it identifies how many
and what kinds of arguments are associated with the hooked
function and where they are located in memory. Callback
function 109 then captures the arguments. In some imple-
mentations, such logic may be implemented in callback
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4

function 109 or in some other code that is separate from
callback function 109 and that may execute prior to callback
function 109.

Callback function 109 then runs any process or sub-
process that may be relevant to the context of its operation
(step 203). In some scenarios, callback function 109 calls
one or more other functions to run in-place of function 101.
In other scenarios, callback function 109 is the only function
to run in-place of function 101. The arguments and param-
eters that are identified earlier may in some cases be passed
on to another function or functions that run in place of
function 101, although in other cases they are not.

When callback function 109 completes, it identifies a path
back to the source of the call that invoked callback function
109 to begin with (step 205). This may be accomplished by
referring to the name, variables, arguments, parameters, or
other information previously stored in memory when call-
back function 109 was initially called. Many techniques for
identifying a return path are possible and may be considered
within the scope of the present disclosure. Calling back to
the original function is optional. In some scenarios, callback
function 109 may call back into the original function before
completing its own routine(s), while in other scenarios it
may call back into the original function multiple times, or
not at all.

Having identified a path back to the source of the call,
callback function 101 calls back into the source (step 207),
which in this scenario is function 101. The callback is made
in such a way that function 101 or the overall program,
routine, or application that it is a part of, can continue to run
normally.

FIG. 1B illustrates a callback architecture 100B for imple-
menting enhanced code callbacks. FIG. 1B also illustrates a
representative operational scenario to demonstrate various
aspects of enhanced code callbacks.

Callback architecture 100B includes many of the same
elements as callback architecture 100A, with the addition of
intermediate function 121, intermediate function 127, dis-
patch function 131, and dispatch function 137. Functions
101, 103, 105 and 107 are representative of any methods,
functions, classes, or other such software components that
may be subject to modification at runtime. Intermediate
functions 121 and 127 are representative of any methods,
functions, classes, or other such software components to
which to which a modified (or swizzled) function can jump.

In operation, a software routine (not pictured) modifies
machine code associated with a designated component so
that the component, rather than executing its own code,
jumps to the code for another function. In this manner, the
other function can be executed in place of the original
function. In this scenario, it is function 101 and function 107
that are modified. After being modified, function 101
includes hook 102, which represents that function 101 is
hooked into intermediate function 121. Function 107 also
includes a hook 108 to represent that function 107 is hooked
into intermediate function 127.

Hooks 102 and 108 are implemented by modifying the
machine code implementation of functions 101 and 107. In
this scenario, the first portion 113 of machine code 111
initially reads EAOS00C, whereas the second portion 115 of
machine code 111 initially reads 1FE2FFE. The aforemen-
tioned software routine searches for machine code 111 in
memory and, upon locating it, overwrites the first portion
113 with new code. The new code in the first portion 113 of
machine code 111 reads CF0819C, merely to represent that
the content of the first portion 113 was overwritten with new
information. It may be appreciated that the same or a similar
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modification may be made to the machine code associated
with function 105. As mentioned many techniques for hook-
ing code are possible and may be considered within the
scope of the present disclosure.

When function 101 is called in operation and machine
code 111 is encountered, the new value in the first portion
113 of machine code 111 causes a programmatic jump to
intermediate function 121 (via its own machine code imple-
mentation). When intermediate function 121 is called, it
invokes dispatch function 131. Dispatch function 131 may
then callback function 109. When callback function 109
executes, it may run its own routines or call yet other
functions. Callback function 109 may also return to function
101.

Similarly, were function 107 to be executed, its machine
code implementation would jump to intermediate function
127. Intermediate function 127 would invoke dispatch func-
tion 137, which in turn would call callback function 109. If
desired, callback function 109 could then return operations
to function 107. This chain of calls allows the arguments and
parameters associated with function 107 to be passed to
callback function 109 seamlessly, which allows callback
function 109 to return to function 107, if desired.

FIG. 1C illustrates a callback architecture 100C for imple-
menting enhanced code callbacks. FIG. 1C also illustrates a
representative operational scenario to demonstrate various
aspects of enhanced code callbacks.

Callback architecture 100C includes many of the same
elements as callback architecture 100B, with the addition of
callback function 139.

In operation, a software routine (not pictured) modifies
machine code associated with a designated component so
that the component, rather than executing its own code,
jumps to the code for another function. In this manner, the
other function can be executed in place of the original
function. In this scenario, it is function 101 and function 107
that are modified. After being modified, function 101
includes hook 102, which represents that function 101 is
hooked into intermediate function 121. Function 107 also
includes a hook 108 to represent that function 107 is hooked
into intermediate function 127.

Hooks 102 and 108 are implemented by modifying the
machine code implementation of functions 101 and 107. In
this scenario, the first portion 113 of machine code 111
initially reads EA05S00C, whereas the second portion 115 of
machine code 111 initially reads 1FE2FFE. The aforemen-
tioned software routine searches for machine code 111 in
memory and, upon locating it, overwrites the first portion
113 with new code. The new code in the first portion 113 of
machine code 111 reads CF0819C, merely to represent that
the content of the first portion 113 was overwritten with new
information. It may be appreciated that the same or a similar
modification may be made to the machine code associated
with function 105. As mentioned many techniques for hook-
ing code are possible and may be considered within the
scope of the present disclosure.

When function 101 is called in operation and machine
code 111 is encountered, the new value in the first portion
113 of machine code 111 causes a programmatic jump to
intermediate function 121 (via its own machine code imple-
mentation). When intermediate function 121 is called, it
invokes dispatch function 131. Dispatch function 131 may
then callback function 109. When callback function 109
executes, it may run its own routines or call yet other
functions. Callback function 109 may also return to function
101.

10

15

20

25

30

35

40

45

50

55

60

65

6

Similarly, were function 107 to be executed, its machine
code implementation would jump to intermediate function
127. Intermediate function 127 would invoke dispatch func-
tion 137, which in turn would call callback function 139. If
desired, callback function 139 could then return operations
to function 107. This chain of calls allows the arguments and
parameters associated with function 107 to be passed to
callback function 139 seamlessly, which allows callback
function 139 to return to function 107, if desired.

The following is an example scenario that may be imple-
mented by an architecture similar to callback architecture
100B and callback architecture 100C. In operation, Java
Native Interface (JNI) hijacking may be utilized to enhance
swizzling. A function may be hooked by overwriting its
machine code to jump to a JNI stub (intermediate function).
The JNI stub takes the arguments/parameters for the hooked
function via an ArtMethod invoked as an argument. The JNI
looks up and invokes a C++ function (dispatch function) that
corresponds an argument pattern associated with the hooked
function. The C++ function can dispatch to a CallHandler
function (central callback function) in order to invoke the
original, hooked function using the arguments/parameters
associated with the hooked function.

FIG. 3 illustrates another callback architecture 300 and
operational scenario in an implementation. Callback archi-
tecture 300 includes function 301, function 303, function
305, and function 307. Functions 301, 303, 305, and 307 are
representative of any functions, methods, classes, or other
software components that may serve as original functions to
be hooked in any manner to call into or jump to callback
function 309. In this scenario, function 301 and function 305
have been modified as such (represented by hooks 302 and
306 respectively), whereas function 303 and function 307
are not hooked.

Callback architecture 300 also includes various target
functions that callback function 309 can call or “route” to
when it is jumped to by a hooked function. The target
functions are represented by function 321, function 322, and
function 323. Functions 321, 322, and 323 are representative
of any function, method, class, or other such software
component that a developer may desire to run in-place of an
original function. In other words, the target functions are not
callback functions with respect to hooked functions, even
though they are the functions that run in-place of original
functions. Rather, callback function 409 performs a central-
ized callback role and services as a single callback function
to which multiple original functions can jump and to which
multiple target functions can return. However, the target
functions may be considered callback functions with respect
to a callback function that calls them, such as callback
function 309.

In operation, function 301 is encountered during the
operation of another program, application, or other software
routine. Hook 302 prompts a call into callback function 309
so that some other code can be run in place of the machine
code implementation of function 101.

When callback function 309 is called, it runs callback
process 200, referred to previously with respect to FIG. 1
and FIG. 2. When code jumps into callback function 309,
callback function 309 identifies the source of the call or
jump. An identity of the source of the call may be stored in
memory for later reference. The source of the call may be
identified by name, by associated variable, arguments, or
parameters, or in a variety of other ways. Callback function
309 then determines which target function or functions to
call. In this example, function 321 is called to run in-place
of function 301.
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When function 321 completes, control returns to callback
function 309. Callback function 309 identifies a path or
mechanism back to function 301, which may include access-
ing the name, arguments, parameters, or other associated
information that was previously stored in memory. Callback
function 309 calls back into function 301 so that function
301 and its associated program can continue to run normally.

FIG. 4 illustrates callback architecture 400 in an imple-
mentation to demonstrate how enhanced callback architec-
tures can vary. Callback architecture 400 includes original
functions represented by function 401, function 403, func-
tion 404, function 406 and function 407.

In a departure, callback architecture 400 includes multiple
callback functions, represented by callback function 409 and
callback function 410. Function 401 hooks into callback
function 409 via hook 402 and function 404 hooks into
callback function 410 via hook 405. Other callback func-
tions are possible and may be considered within the scope of
the present disclosure. Callback function 409 routes to
various target functions, represented by function 421, func-
tion 422, and function 423. Callback function 410 routes to
various other target functions, represented by function 425
and function 427.

Various technical effects may be appreciated from the
foregoing disclosure. Hooking functions by modifying their
machine code to jump into a callback function or functions
makes it possible to run other functions in their place. This
provides a technical advantage when previous techniques
are not possible or are difficult. In addition, a single,
centralized callback function makes managing the jumps
and callbacks associated with machine-code level imple-
mentations feasible.

Other technical effects include the ability to hook func-
tions to an intermediate function. This provides a mecha-
nism for cleanly passing the arguments for a hooked func-
tion to a callback function via a dispatcher function. In
addition, some techniques contemplated herein, such as JNI
stub hijacking, leverages the system/environment being
modified to generate an intermediate function or functions.

Overall, the enhanced callback technology disclosed
herein allows code substitution to proceed in runtime envi-
ronments that are less hospitable to code substitution than in
the past.

FIG. 5 illustrates computing system 501 that is represen-
tative of any system or collection of systems in which the
various operational architectures, scenarios, and processes
disclosed herein may be implemented. Examples of com-
puting system 501 include, but are not limited to, smart
phones, laptop computers, tablet computers, desktop com-
puters, hybrid computers, gaming machines, virtual
machines, smart televisions, smart watches and other wear-
able devices, as well as any variation or combination
thereof. In other examples, other types of computers may be
involved in the processes, including server computers, rack
servers, web servers, cloud computing platforms, and data
center equipment, as well as any other type of physical or
virtual server machine, and any variation or combination
thereof.

Computing system 501 may be implemented as a single
apparatus, system, or device or may be implemented in a
distributed manner as multiple apparatuses, systems, or
devices. Computing system 501 includes, but is not limited
to, processing system 502, storage system 503, software
505, communication interface system 507, and user interface
system 509. Processing system 502 is operatively coupled
with storage system 503, communication interface system
507, and user interface system 509.
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Processing system 502 loads and executes software 505
from storage system 503. Software 505 includes at least
callback process 506, which is representative of the callback
processes discussed with respect to the preceding FIGS. 1-4,
including callback process 200 and the processes embodied
in operational scenarios discussed herein. When executed by
processing system 502 to enhance callback operations, soft-
ware 505 directs processing system 502 to operate as
described herein for at least the various processes, opera-
tional scenarios, and sequences discussed in the foregoing
implementations. Computing system 501 may optionally
include additional devices, features, or functionality not
discussed for purposes of brevity.

Referring still to FIG. 5, processing system 502 may
comprise a micro-processor and other circuitry that retrieves
and executes software 505 from storage system 503. Pro-
cessing system 502 may be implemented within a single
processing device, but may also be distributed across mul-
tiple processing devices or sub-systems that cooperate in
executing program instructions. Examples of processing
system 502 include general purpose central processing units,
application specific processors, and logic devices, as well as
any other type of processing device, combinations, or varia-
tions thereof.

Storage system 503 may comprise any computer readable
storage media readable by processing system 502 and
capable of storing software 505. Storage system 503 may
include volatile and nonvolatile, removable and non-remov-
able media implemented in any method or technology for
storage of information, such as computer readable instruc-
tions, data structures, program modules, or other data.
Examples of storage media include random access memory,
read only memory, magnetic disks, optical disks, flash
memory, virtual memory and non-virtual memory, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other suitable storage
media. In no case is the computer readable storage media a
propagated signal.

In addition to computer readable storage media, in some
implementations storage system 503 may also include com-
puter readable communication media over which at least
some of software 505 may be communicated internally or
externally. Storage system 503 may be implemented as a
single storage device, but may also be implemented across
multiple storage devices or sub-systems co-located or dis-
tributed relative to each other. Storage system 503 may
comprise additional elements, such as a controller, capable
of communicating with processing system 502 or possibly
other systems.

Software 505 may be implemented in program instruc-
tions and among other functions may, when executed by
processing system 502, direct processing system 502 to
operate as described with respect to the various operational
scenarios, sequences, and processes illustrated herein. For
example, software 505 may include program instructions for
implementing enhanced callback operations and related
functionality.

In particular, the program instructions may include vari-
ous components or modules that cooperate or otherwise
interact to carry out the various processes and operational
scenarios described herein. The various components or
modules may be embodied in compiled or interpreted
instructions, or in some other variation or combination of
instructions. The various components or modules may be
executed in a synchronous or asynchronous manner, serially
or in parallel, in a single threaded environment or multi-
threaded, or in accordance with any other suitable execution
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paradigm, variation, or combination thereof. Software 505
may include additional processes, programs, or components,
such as operating system software or other application
software, in addition to or that include callback process 506.
Software 505 may also comprise firmware or some other
form of machine-readable processing instructions execut-
able by processing system 502.

In general, software 505 may, when loaded into process-
ing system 502 and executed, transform a suitable apparatus,
system, or device (of which computing system 501 is
representative) overall from a general-purpose computing
system into a special-purpose computing system customized
to facilitate enhanced callback operations. Indeed, encoding
software 505 on storage system 503 may transform the
physical structure of storage system 503. The specific trans-
formation of the physical structure may depend on various
factors in different implementations of this description.
Examples of such factors may include, but are not limited to,
the technology used to implement the storage media of
storage system 503 and whether the computer-storage media
are characterized as primary or secondary storage, as well as
other factors.

For example, if the computer readable storage media are
implemented as semiconductor-based memory, software 505
may transform the physical state of the semiconductor
memory when the program instructions are encoded therein,
such as by transforming the state of transistors, capacitors,
or other discrete circuit elements constituting the semicon-
ductor memory. A similar transformation may occur with
respect to magnetic or optical media. Other transformations
of physical media are possible without departing from the
scope of the present description, with the foregoing
examples provided only to facilitate the present discussion.

It may be understood that computing system 501 is
generally intended to represent a computing system or
systems on which software 505 may be deployed and
executed in order to implement enhanced callback opera-
tions. However, computing system 501 may also be suitable
as any computing system on which software 505 may be
staged and from where it may be distributed, transported,
downloaded, or otherwise provided to yet another comput-
ing system for deployment and execution, or yet additional
distribution.

Communication interface system 507 may include com-
munication connections and devices that allow for commu-
nication with other computing systems (not shown) over
communication networks (not shown). Examples of connec-
tions and devices that together allow for inter-system com-
munication may include network interface cards, antennas,
power amplifiers, RF circuitry, transceivers, and other com-
munication circuitry. The connections and devices may
communicate over communication media to exchange com-
munications with other computing systems or networks of
systems, such as metal, glass, air, or any other suitable
communication media. The aforementioned media, connec-
tions, and devices are well known and need not be discussed
at length here.

User interface system 509 may include a keyboard, a
mouse, a voice input device, a touch input device for
receiving a touch gesture from a user, a motion input device
for detecting non-touch gestures and other motions by a user,
and other comparable input devices and associated process-
ing elements capable of receiving user input from a user.
Output devices such as a display, speakers, haptic devices,
and other types of output devices may also be included in
user interface system 509. In some cases, the input and
output devices may be combined in a single device, such as
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a display capable of displaying images and receiving touch
gestures. The aforementioned user input and output devices
are well known in the art and need not be discussed at length
here.

User interface system 509 may also include associated
user interface software executable by processing system 502
in support of the various user input and output devices
discussed above. Separately or in conjunction with each
other and other hardware and software elements, the user
interface software and user interface devices may support a
graphical user interface, a natural user interface, or any other
type of user interface.

Communication between computing system 501 and
other computing systems (not shown), may occur over a
communication network or networks and in accordance with
various communication protocols, combinations of proto-
cols, or variations thereof. Examples include intranets, inter-
nets, the Internet, local area networks, wide area networks,
wireless networks, wired networks, virtual networks, soft-
ware defined networks, data center buses, computing back-
planes, or any other type of network, combination of net-
work, or variation thereof. The aforementioned
communication networks and protocols are well known and
need not be discussed at length here. However, some com-
munication protocols that may be used include, but are not
limited to, the Internet protocol (IP, IPv4, IPv6, etc.), the
transfer control protocol (TCP), and the user datagram
protocol (UDP), as well as any other suitable communica-
tion protocol, variation, or combination thereof.

In any of the aforementioned examples in which data,
content, or any other type of information is exchanged, the
exchange of information may occur in accordance with any
of a variety of protocols, including FTP (file transfer pro-
tocol), HTTP (hypertext transfer protocol), REST (represen-
tational state transfer), WebSocket, DOM (Document Object
Model), HTML (hypertext markup language), CSS (cascad-
ing style sheets), HTML5, XML (extensible markup lan-
guage), JavaScript, JSON (JavaScript Object Notation), and
AJAX (Asynchronous JavaScript and XML), as well as any
other suitable protocol, variation, or combination thereof.

The following is a discussion of various techniques that
may be employed to accomplish enhanced swizzling, as well
as other related concepts and techniques. Android Runtime
(ART) is an application runtime environment used by the
Android operating system. ART replaces Dalvik, which is
the process virtual machine originally used by Android, and
performs transformation of the application’s bytecode into
native instructions that are later executed by the device’s
runtime environment.

The ART support code discussed herein is based on the
fundamental idea of overwriting the machine language code
for a function to call into other code, as was previously
implemented in the Mobile Substrate library. However,
Mobile Substrate is built for code output by a typical
compiler. ART outputs what it refers to as “managed code,”
which follows a number of assumptions that the straight-
forward approach of mobile substrate breaks. The following
summarizes the additional issues that are faced to implement
swizzling for Java code on Android compiled with ART, and
technical solutions to them.

Swizzling is used to customize software on the device.
These customizations are called “Tweaks” and are available
through the Cydia store on i0OS and through “Xposed” on
Android, for example.

Many Methods, One Callback, Unusual Calling Conven-
tion.
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Mobile Substrate assumes that, for every function hooked,
a different callback is provided for it to jump to. It is
proposed herein for the support code to have calls to all
hooked functions be handled by only one or a few callbacks,
to reduce effort and reduce risk. Each function hooked has
different numbers and types of arguments, stored in different
locations (a mix of the stack and registers). One callback is
utilized to figure out how many and what kinds of arguments
there are, where they are, and then capture them.

The first argument to every method is a reference to a data
structure called the “ArtMethod,” which contains metadata
about the method. The ArtMethod data structure is used to
look-up a data item which ART refers to as the “shorty,”
which contains a brief summary of the number and types of
arguments passed to the method. The stack is traversed to
find arguments in the correct locations, using the va_list
interface provided by C for accessing the stack directly.
Arguments declared in normal and floating-point registers
are accessed by declaring arguments appropriately.

The calling convention used by the main mode of ART
differs from the standard, so there is additional work to do
to compute where stack arguments are stored, as many
memory locations will contain undefined values (garbage).

In case ART changes its calling convention to not provide
the ArtMethod as the first argument, techniques can be used
that are similar to those used to compile closures. For each
hooked function, a new piece of assembly is generated
which moves a value (either a pointer to the ArtMethod, or
some data structure which contains the necessary informa-
tion) into some location, and then jumps into a common
callback. This allows the equivalent of having a distinct
callback for every hooked function, but without most of the
complexities needed to generate the full callback.

ART also has a deduplication (“de-dupe”) feature, where,
if two methods compile to the same code, it will reuse the
same code at the same address for both. Thus, if one is
hooked, both will inadvertently be hooked. Thus, the code
needs to distinguish which was actually called. If the method
is an instance method rather than a static method, the code
can still tell which by looking at the type of the receiver
object (the “this” reference). This may still confuse identical
methods on the same object, which should be a rare and
benign case. In that case, using information described in the
“Special stack frame” section, the code can still distinguish
them by examining the stack, getting the dex-pc of the caller,
and looking at the corresponding bytecode.

The location the code moves the value into would need to
not contain important information, and could not be used by
another thread. The likely candidates are either an unused
register, or an address in the thread-local storage which
contains an unchanging value (the value would need to be
restored after the call). The current implementation of ART
always keep a reference to thread-local storage in one of the
registers.

Calling Original Function/Special Code Location.

Because the support code is using the same callback for
many different functions, to call the original function, how
arguments are passed cannot be hard coded. However, the
ART runtime offers the “ArtMethod::Invoke” method for
correctly calling any method, no matter how they accept
arguments. The following algorithm can be used to call the
original code, which is similar to how we call the original
code for Dalvik.

First, the support code creates a copy of the ArtMethod
object for the hooked method. The code sets the “entry-
PointFromCompiledCode” field to point to the “origCode”
item returned by an assembly-hooking routine. Recall that
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“origCode” is a copy of the first few bytes of the original
code of the method (which was replaced), followed by a
jump to the remainder of the original code. Next, the
“ArtMethod::Invoke” method is used to correctly invoke the
original code.

However, this may not always work because ART
assumes that, immediately before the address pointed to by
“entryPointFromCompiledCode,” there is the “Quick-
MethodFramelnfo™ data structure containing some metadata
about the compiled code, such as the code size (number of
bytes in the compiled code). ART may later look for this data
structure, and, finding garbage, will crash. Thus, the support
code cannot simply copy that data structure, as ART, when
constructing stack traces, assumes that all code (PCs) for the
method is between “entryPointFromCompiledCode” and
“entryPointFromCompiledCode+codeSize.”

There are two proposed solutions to this problem. Instead
of using ArtMethod::Invoke, invoke origCode directly using
the same technique used by ArtMethod::Invoke. This
involves setting up the stack frame and registers to match
ART’s assumptions. Alternatively, ART keeps the Java byte-
code around, and also has an interpreter. The support code
can instead invoke the interpreter on the original method.
This does not have major performance implications, as it
will jump back into compiled code whenever it makes a
method call.

Special Stack Frame.

Every compiled ART method has a fixed-size stack frame
with certain values stored in certain places. In particular, the
bottom of the stack frame contains a reference to the
ArtMethod object. This enables it to lookup the stack frame
size and find the previous stack frame. It uses this informa-
tion to construct stack traces.

At certain points, ART-generated code will write the
location of the bottom stack frame to a certain location in
thread-local storage, so that it can generate stack traces.
During most of execution, in particular during calls to
hooked functions, that value will be out-of-date garbage (i.e.
undefined), and thus ART will not be able to construct a
valid stack trace (and likely will segfault).

However, the “sp” register points to the bottom of the
previous stack frame when a hooked function is called.
Thus, at the beginning of our callback function, before any
normal prologue code runs, we use handcrafted assembly
code to write this value into that location in thread-local
storage.

That offset in thread-local storage may not be the same
between versions, so, to avoid having to generate new code
to get this to work on different devices, at application
startup, the support code uses some heuristics to find that
offset, and then write it to a special location so that our
assembly can look it up.

In the discussion above, the value of the “sp” stack-
pointer register needed to be known before the body of the
function is entered, and so it was assumed special assembly
code would be needed to run before calling the function.
Normally, the compiler would emit code that would decre-
ment sp before any of the code within the function itself is
executed. However, there is no good way to know how much
it decremented sp by, and so there is no good way to know
its previous value. While this value would be constant, it
could change every time the code is recompiled, meaning
that hardcoding it into the program would be extremely
risky.

However, code compiled for ARM would use the “APCS”
calling convention. In APCS, one of the registers would be
reserved as the “frame pointer,” or “fp”, and would point to
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a special location considered the “beginning” of the stack
frame. The previous value of sp would be equal to “fp+4”.

Although APCS is only one option, the compiler could be
forced to use it by using the “-marm-mapcs-frame” flags.
The support code could then access the frame pointer using
“_builtin_frame_address(0)”, and compute the previous
value of sp appropriately. Thus, no special assembly code is
needed.

Inlined Code.

Sometimes as an optimization, the compiler will replace
a function call with the code from the function’s definition.
However, it also outputs some metadata indicating it has
done so. It also keeps around the original Java bytecode,
which tells us that it is conceptually calling that method, and
there is the “mapping table” metadata informing us which
lines of machine code correspond to which lines of Java
bytecode. This mapping data can be used to overwrite the
assembly at every single in-lining site.

Too Small.

Typically, 8 bytes is needed to overwrite a function; some
functions are only 4 bytes. However, the metadata expresses
the code size. Thus, a function’s size can be looked up and
the support code can avoid hooking ones which are too
small.

Multiple Compiler Modes.

ART has multiple compiler modes. Any function can ship
with bytecode (executed by the interpreter), “portable com-
piled code,” and/or “quick compiled code.” The latter two
are both generated assembly code, but with different calling
conventions. A function can have all three, and any of them
may be run.

For the compiled code, the support code hooks both using
the mechanisms described above (but see the “Trampolines
and Bridges™ section below).

For the interpreted code: the support code replaces the
“entryPointFromInterpreter” with the “interpreterloCom-
piledCodeBridge”. Hence, when the interpreter tries to run
the method, it will instead invoke the code pointed to the
“entryPointFromQuickCompiledCode” or the “entryPoint-
FromPortableCompiledCode” fields. If compiled code
exists, then, since the code has already hooked the compiled
code, this works. Else, the code sets the entryPointFrom-
CompiledCode fields to point directly to the callback. Since
the interpreterToCompiledCodeBridge sets up the environ-
ment to properly call compiled code, and the callback is
designed to work with that environment, this works.

There are a couple of other options for hooking the
interpreter. One is to do the same thing as is done for Dalvik:
set the “native” flag on the method, and then provide a value
for the “native function” field. However, ART assumes that
native methods have a different entryPointFromlInterpreter,
and will do unusual things here. The other is to set the
entryPointFromInterpreter directly to a new callback; how-
ever, doing so is complicated, and requires interfacing with
a lot of parts of the ART runtime that may change between
versions and devices.

Trampolines and Bridges.

The “entryPointFromQuickCompiledCode” and “entry-
PointFromPortableCompiledCode” may not actually point
directly to the compiled code. They may instead point to a
trampoline or bridge.

Example trampoline: If you invoke a static method on a
class that has not yet been Iinitialized, its
entryPointFrom*CompiledCode will point to a “trampoline
function” which initializes the class, and then calls the actual
method code. It also changes the entryPointFromCompiled-
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Code to be the actual code of the method, so that this does
not have to be repeated next time.

Example bridge: If a method has code produced by the
“quick compiler” but not by the “portable compiler”, then its
entryPointFromPortableCompiledCode will be the portable-
to-quick bridge, which sets up the environment appropri-
ately and then invokes the quick-compiled code.

Overwriting the assembly of a trampoline or bridge can
cause serious problems and crashes, as doing so will affect
many methods other than the one we intended to hook.
Instead of relying on these entrypoints, the support code
employs a procedure that directly looks up the code for the
method in the executable file. However, recall that the
interpreter hooking needs to actually change the
entryPointFrom*CompiledCode; if it pointed to a trampo-
line, changing it may cause the method to be called without
first initializing the class. So, before hooking a method, the
Java API is used that that forces the class to be initialized.
This causes ART to replace some trampolines with direct
pointers to the code.

Future-Proofing.

Various techniques may be employed to mitigate the risks
associated with running in a different version of ART where
assumptions change. Dynamic linking is used so that the
support code can check that functions that may be called
actually exist. At application start, the support code attempts
to swizzle code; if unsuccessful, the support code will shut
down the library for this and all future runs of the app to
avoid crash risk. Instead of directly accessing fields in
structures, the support code figures out at what offset they
are stored by comparing them to known values.

Race Conditions.

One place where it’s known to have race conditions is in
overwriting code. To hook a function, MobileSubstrate
overwrites 4 bytes, then overwrites another 4 bytes; if
another thread is executing that function during that period,
it could crash. To avoid this, special assembly instructions
may be employed that can atomically perform a 64-bit write
(e.g.: those used by OSAtomicCompareAndSwap64 and
friends), as well as APIs that allow for a pause in the other
Java threads while the support code is hooking.

Garbage Collection Roots.

Java is a garbage-collected language, meaning any unused
memory will be automatically freed. A garbage collector
basically works as follows: Find all objects immediately
accessible by the program, namely all objects that are stored
in local variables at the current time of execution. These are
called the “roots”. Find all objects that the program could
possibly access in the future by finding all objects referenced
by the roots, then all objects referenced by objects refer-
enced by the roots, etc. These are called the “reachable”
objects. Free the memory used by all non-reachable objects.

In order to find the roots, every method comes equipped
with two pieces of metadata: The “GC Map.” The GC map
shows, for various points in the compiled method’s machine
code, which locations contain pointers to objects. These
locations can be either locations in the method’s stack frame,
or registers. The “spill mask”. When one method calls
another, the callee will need to use the registers, even though
the caller has important data stored in them. It will thus save
the previous value of the registers to the stack. The registers
that it saves are recorded in the “spill mask.”

The garbage collector traverses the stack to find the roots,
examining the chain of method callers. When the GC map
indicates that a method saved a pointer in a register, it uses
the spill masks to find where a different method saved that
register to the stack.
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When the support code hooks a function, the code runs
and saves registers to the stack. The garbage collector will
not know this. This results in it looking in the wrong place
for the saved registers. It may attempt to treat a garbage
value as a pointer (and crash), or it may erroneously consider
a reachable-object as non-reachable and free it, resulting in
a crash later when that object is accessed.

The runtime has a mechanism for dealing with this.
Whenever compiled Java code calls a C++ function, it first
invokes a special assembly function called a “callee-save
method.” That assembly function will save all registers to
the stack. It will then mark the stack-frame with a special
value indicating to the garbage collector that it has done so.
In order to address this, the support could would need to
integrate with this mechanism, essentially crafting original
assembly code that does this.

JNI-Stub Hijacking.

JNI-stub hijacking is a technique that allows many of the
problems mentioned above to be avoided. Consider a native
Java function like the following:

public static native String foo(String X, int y);

A Java program that wishes to invoke this function will
first load a C++ library containing an implementation for
foo. foo is written according to the Java Native Interface
(INI), which is specified in the Java Standard, and hence will
not change in a backwards-incompatible way. When it
invokes this function, the runtime will find this implemen-
tation and invoke it.

To accomplish this, the ART compiler will compile the
above declaration into a “JNI stub.” The INI stub will do
everything needed to transition from code managed by the
ART runtime to “normal” C++ code, including: Save reg-
isters and inform the garbage collector it has done so;
Writing the location of the current stack-frame in thread
local storage; Dynamically look up the C++ function asso-
ciated with the current ART method; Invoke it according to
a standard calling convention.

This stub will be the same for any two native methods that
have similar arguments and return-values. At the assembly
level, any two objects can be treated the same and hence can
be considered similar arguments. Any 32-bit primitive value
(e.g.: integers and booleans) can also be treated the same.

Empirically, although the support code swizzles scores of
methods, there are currently only 16 distinct argument
patterns according to this criterion. The support code ships
with one native method declaration and one C++ function
for each, forcing the compiler to generate a JNI stub for each
argument pattern we care about. When the support code
hooks the assembly of a function, instead of having it jump
directly to our code, it jumps to the appropriate compiled
INI stub. Note that the JNI stub still takes the ArtMethod
being invoked as an argument. The “native function” entry
is set on the ArtMethod so that the JNI stub will look up and
invoke the C++ function that is provides. Like the code for
normal ART methods, the INT stub will save the ArtMethod
being invoked to the stack; the support code must also
change the metadata on the ArtMethod so that the garbage
collector and stack-trace-mechanism will treat it like the
native method for which the JNI stub was generated.

The JNI stub will now invoke the C++ function that has
been provided—there is one C++ function for each argument
pattern. Because the JNI stub saved the ArtMethod being
invoked to the stack, and then saved that stack location to
thread-local storage, the support code can look up what
method it was invoked from—indeed, the ART runtime even
ships with a function for doing so. These C++ functions then
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dispatch to a centralized “callHandler” in order to invoke the
original function and notify Apptimize.

Some of the techniques of the “Many methods, one
callback” section above, parsing the shorty to deal with all
methods in one place. However, the support code is no
longer concerned with the special calling convention, as the
JNI stub invokes our C++ functions according to the JNI
standard, and these functions in turn pass the arguments to
the callHandler in a structured format. The centralized
“callHandler” is no longer strictly necessary, as we could
instead have each C++ function do this themselves. (Note
that, however, there would still be one callback for every
method of a single argument pattern—the correct behavior
can be performed because the support code can look up what
method it is being called for.)

To hook interpreted functions, we set the “entryPointFro-
mlinterpreter” to the “artlnterpreterloCompiledCode-
Bridge”. We then set the “entryPointFromCompiler” to point
to the code of the appropriate JNI stub.

The key benefit of this method is that we are “turning ART
against itself.” Because we force ART to generate code that
bridges from its own environment to a standardized one, we
no longer need to worry about the internal structure of
ART-generated code, and are fairly impervious to changes in
that between versions and devices.

Concerns that arise during swizzle-time, such as dealing
with inlined functions, or being sure not to accidentally hook
a trampoline function, still apply.

Dealing with De-Dupe.

Earlier, we mentioned that, if two methods compile to the
same code, ART may “de-dupe” them and store only one
copy of the compiled code. Thus, if we hook one, we hook
both.

This poses more problems for JNI-stub hijacking. With
the methods described above, when an inadvertently-hooked
ART method is called, it will jump to the JNI stub. The JNI
stub will look up the C++ function associated with the ART
method and jump to it. However, the inadvertently-hooked
method is not native and has no associated C++ function,
and hence the JNI stub will segfault.

There are several solutions to this problem. One solution
is to, at runtime, iterate through all ArtMethod’s and identify
the ones that share code. When the support code hooks one
function, it can hook all clones as well. Note that hooking a
function involves marking it as native and associating a C++
function, solving the crash. Because a method is most likely
to have the same code as another method in the same class,
we can restrict this search to other ArtMethod’s of the class
containing the hooked method. Because ART can only
de-dupe methods compiled at the same time, and most of the
methods that are hooked are in the system library, they can
only be de-duped with other methods in the system library.
The support code can simply include information about
known instances of de-duping.

Another solution is to recover from the segfault. When the
INI stub segfaults, the support code can examine the stack,
find the ArtMethod that was called, associate it with a C++
function, and then resume execution.

Still another solution is to run a “trampoline” function
before the JNI stub. Instead of modifying assembly code to
jump directly to the JNI stub, the support code can modify
it to jump to a hand-crafted assembly “trampoline” function.
This trampoline examines the ArtMethod; if it’s a hooked
method, it continues into the JNI stub; else, it calls the
original method.

The functional block diagrams, operational scenarios and
sequences, and flow diagrams provided in the Figures are
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representative of exemplary systems, environments, and
methodologies for performing novel aspects of the disclo-
sure. While, for purposes of simplicity of explanation,
methods included herein may be in the form of a functional
diagram, operational scenario or sequence, or flow diagram,
and may be described as a series of acts, it is to be
understood and appreciated that the methods are not limited
by the order of acts, as some acts may, in accordance
therewith, occur in a different order and/or concurrently with
other acts from that shown and described herein. For
example, those skilled in the art will understand and appre-
ciate that a method could alternatively be represented as a
series of interrelated states or events, such as in a state
diagram. Moreover, not all acts illustrated in a methodology
may be required for a novel implementation.

The descriptions and figures included herein depict spe-
cific implementations to teach those skilled in the art how to
make and use the best option. For the purpose of teaching
inventive principles, some conventional aspects have been
simplified or omitted. Those skilled in the art will appreciate
variations from these implementations that fall within the
scope of the invention. Those skilled in the art will also
appreciate that the features described above can be com-
bined in various ways to form multiple implementations. As
a result, the invention is not limited to the specific imple-
mentations described above, but only by the claims and their
equivalents.

The invention claimed is:

1. An apparatus comprising:

one or more non-transitory computer readable storage

media; and
program instructions stored on the one or more computer
readable storage media, wherein the program instruc-
tions comprise a callback function that, when executed
by a processing system in an application runtime envi-
ronment, direct the processing system to at least:

identify an original function modified post-compilation to
hook into a Java Native Interface (JNI) stub that calls
into the callback function;

store an identity of the original function and identify a

path for returning to the original function based on the
identity of the original function;

identify a target function to run in-place of the original

function and call into the target function; and

upon the target function completing, return to the original

function, wherein the return is made such that the
original function, and a program, routine, or application
that it is a part of, continues to run normally.
2. The apparatus of claim 1 further comprising the pro-
cessing system operatively coupled to the one or more
computer readable storage media, wherein the processing
system reads and executes the program instructions.
3. A method comprising:
modifying machine code representative of multiple origi-
nal functions to hook into a Java Native Interface (JNI)
stub that jumps into a single callback function when
any of the multiple original functions are invoked;

tracking which original function of the multiple original
functions jumped to the callback function when the
callback function is called;

storing an identity of the original function that jumped to

the callback function and identifying a path back to the
original function based on the identity of the original
function;
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identifying which target function of multiple target func-
tions to call into in response to the original function
jumping to the callback function and calling the target
function; and

when the target function returns to the callback function,

return to the original function via the path, wherein the
return is made such that the original function, and a
program, routine, or application that it is a part of,
continues to run normally.

4. An apparatus comprising:

one or more non-transitory computer readable storage

media;

a processing system operatively coupled with the one or

more computer readable storage media; and

program instructions stored on the one or more computer

readable storage media that, when executed by the
processing system, direct the processing system to at
least:

modify machine code representative of multiple original

functions to jump into trampoline functions when the
multiple original functions are invoked;
when an original function of the multiple original func-
tions is invoked, jump into a trampoline function to
determine if the original function hooks into a Java
Native Interface (JNI) stub that jumps into a callback
function;
when the original function hooks into the JNI stub, store
an identity of the original function that is invoked,
identify a path for returning to the original function
based on the identity of the original function, and
execute a call dispatch function associated with the JNI
stub to dispatch to a callback function with associated
arguments/parameters;
identify a target function to execute in-place of the
original function and call into the target function; and

upon the target function completing, return to the original
function, wherein the return is made such that the
original function, and a program, routine, or application
that it is a part of, continues to run normally.

5. The apparatus of claim 1, wherein the application
runtime environment comprises Android Runtime (ART).

6. The apparatus of claim 1, wherein the identity of the
original function comprises one or more of a function name
or one or more variables, arguments, or parameters associ-
ated with the function.

7. The apparatus of claim 1, wherein the target function
comprises a copy of the original function prior to modifi-
cations to hook into the JNI stub.

8. The apparatus of claim 1, wherein the original function
is modified post-compilation to hook into the JNI stub by, in
part, marking the original function as native.

9. The method of claim 3, wherein the identity of the
original function comprises one or more of a function name
or one or more variables, arguments, or parameters associ-
ated with the function.

10. The method of claim 3, wherein the target function
comprises a copy of the original function prior to modifi-
cations to hook into the JNI stub.

11. The method of claim 3, wherein the original function
is modified post-compilation to hook into the JNI stub by, in
part, marking the original function as native.

12. The apparatus of claim 4, wherein the dispatch func-
tion comprises a C++ function that corresponds to an argu-
ment pattern associated with the original function.

13. The apparatus of claim 4, wherein the program
instructions are executed by the processing system in an
application runtime environment.
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14. The apparatus of claim 13, wherein the application
runtime environment comprises Android Runtime (ART).

15. The apparatus of claim 4, wherein the identity of the
original function comprises one or more of a function name
or one or more variables, arguments, or parameters associ- 5
ated with the function.

16. The apparatus of claim 4, wherein the target function
comprises a copy of the original function prior to modifi-
cations to hook into the JNI stub.

17. The apparatus of claim 4, wherein the original func- 10
tions are modified post-compilation to hook into the JNI stub
by, in part, marking the original functions as native.
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